diff --git a/OPENENET-MoneroSpace-Satellite-Network-for-monero.md b/OPENENET-MoneroSpace-Satellite-Network-for-monero.md
index 0e365e0..d435006 100644
--- a/OPENENET-MoneroSpace-Satellite-Network-for-monero.md
+++ b/OPENENET-MoneroSpace-Satellite-Network-for-monero.md
@@ -33,49 +33,36 @@ payouts:
---
-# OPENENET-MS01: MoneroSpace Decentralized Satellite Network
+# OPENENET-MS01-MoneroSpace-Decentralized-Satellite-Network
**Proposal ID:** OPENENET-MS01
- **Project Repository:** [https://git.openenet.cn/MoneroSpace](https://git.openenet.cn/MoneroSpace)
-- **Collaboration Platform:** [https://cloud.openenet.cn/MoneroSpace](https://cloud.openenet.cn/MoneroSpace)
-- **Project funding deadline: December 28, 2035 00:00 (UTC). If the project is not completed after this time, the remaining funds will be handed over to CCS**
+- **Collaboration Platform:** [https://cloud.openenet.cn/](https://cloud.openenet.cn/)
+- **Project Funding Deadline:** December 28, 2035, 00:00 UTC. Unused funds will be returned to CCS if the project is incomplete by this date.
+
## 1. Project Overview
-
### 1.1 Core Objectives
MoneroSpace aims to build a **decentralized censorship-resistant satellite communication network** through open-source hardware and encryption protocols, achieving:
-- **Global Ubiquitous Access**: Providing Monero transaction channels for areas without terrestrial networks (e.g., oceans, polar regions) and censored regions (e.g., Iran, Syria).
-- **Physical-Layer Censorship Resistance**: Bypassing internet blockades using low-earth orbit (LEO) satellites to ensure independent transaction broadcasting.
+- **Global Ubiquitous Access**: Providing Monero transaction channels for regions without terrestrial networks (e.g., oceans, polar areas) and censored zones (e.g., Iran, Syria).
+- **Physical-Layer Censorship Resistance**: Bypassing internet blockades with low-earth orbit (LEO) satellites to ensure independent transaction broadcasting.
- **Community-Driven Ecosystem**: Open-sourcing satellite hardware designs and communication protocols to enable third-party node deployment.
### 1.2 Core Values
| Dimension | Innovation | Contribution to Monero Ecosystem |
|--------------|----------------------------------------------------------------------------|------------------------------------------------|
-| **Technical** | Laser+RF hybrid communication, radiation-hardened full-node design | Enhances network redundancy against 51% attacks and geographic blockades |
-| **Compliance**| Neutral-region ground station deployment, ITU spectrum compliance | Meets data privacy and international telecommunication regulations |
-| **Economic** | Satellite node mining incentives, transaction fee sharing model | Establishes a sustainable decentralized infrastructure economy |
+| **Technical** | Laser-RF hybrid communication and radiation-hardened full-node design | Enhances network redundancy against 51% attacks and geographic blockades |
+| **Compliance**| Neutral-region ground station deployment and ITU spectrum compliance | Meets international telecommunication regulations and data privacy standards |
+| **Economic** | Satellite node mining incentives and transaction fee sharing model | Establishes a sustainable decentralized infrastructure economy |
## 2. Technical Solution
-
### 2.1 Satellite Node Hardware Architecture (3U CubeSat Standard)
-
-#### 2.1.1 Core Component Specifications
-| Module | Technical Parameters | Radiation/Life Design |
-|----------------|--------------------------------------------------------------------------------------|---------------------------------------------|
-| **Dimensions/Weight** | 3U (10×10×34cm), 5.2kg (including 200g hydrazine fuel) | Carbon fiber frame + aluminum panel (40% reduction in space radiation absorption) |
-| **Power System** | - Dual-sided gallium arsenide solar panels: 60W peak power (28% efficiency)
- Radiation-hardened lithium battery: 25Ah (1000 charge cycles)
- Power management: Dynamic allocation (30W operational, 5W standby) | Anti-UV coating on solar panels for aging resistance |
-| **Computing Unit**| - Processor: 8-core ARM Cortex-A72 (1.5GHz, QML V-level radiation-hardened, SEU flip rate < 0.5 times/year)
- Memory: 8GB LPDDR4 (ECC-enabled, operating temp -55°C~+85°C)
- Storage: 512GB industrial eMMC (100,000 write cycles, hardware-level wear leveling) | Processor-integrated temperature sensor, automatic downclocking to 1.0GHz above 75°C |
-| **Communication Modules** | **Laser Terminal**:
- 1550nm wavelength, 500km range, 2.5Gbps rate
- QPSK+LDPC error correction (bit error rate < 10^-10)
**RF Module**:
- Ku band (12-18GHz), DVB-S2X compliant, phased array antenna (30dBi gain) | Laser terminal with micro-propulsion calibration (pointing accuracy ±0.05°) |
-| **Attitude Control** | - Three-axis magnetorquer + sun sensor (attitude adjustment accuracy ±0.1°)
- Hydrazine micro-thrusters (orbit maintenance, 3-year fuel reserve) | Dual-redundancy control modules (switching time < 30ms) |
-
#### 2.1.2 Hardware Design Resources
-- Motherboard Layout: [https://git.openenet.cn/MoneroSpace/hardware-design/ms01-board-layout.png](https://git.openenet.cn/MoneroSpace/hardware-design/ms01-board-layout.png) (Draft for public review)
-- Antenna Deployment Mechanism: [https://git.openenet.cn/MoneroSpace/hardware-design/antenna-mech.pdf](https://git.openenet.cn/MoneroSpace/hardware-design/antenna-mech.pdf) (Including stress analysis)
-
+- Motherboard Layout: [/MoneroSpace](https://git.openenet.cn/MoneroSpace)
+- Antenna Deployment Mechanism: [/MoneroSpace](https://git.openenet.cn/MoneroSpace)
### 2.2 Communication System Design
-
#### 2.2.1 Three-Layer Communication Architecture
```mermaid
graph TB
@@ -93,143 +80,37 @@ graph TB
end
```
- **User Access**:
- - Terminal modification: Compatible with Starlink Dish, integrated with radiation-hardened encryption module (ChaCha20-Poly1305).
- - Dynamic frequency hopping: 128 frequency points, 10-second interval, with satellite-side frequency prediction (45% improved anti-jamming success rate).
+ - Terminal modification: Compatible with commercial satellite terminals (e.g., Starlink Dish), integrated with radiation-hardened encryption modules (ChaCha20-Poly1305 algorithm).
+ - Dynamic frequency hopping: 128 frequency points with 10-second interval switching, combined with satellite-side frequency prediction to achieve 45% improved anti-jamming success rate.
- **Inter-Satellite Communication**:
- - Laser link: Randomly selects 2 neighbors for forwarding, adds 30% dummy transactions to obfuscate paths (anonymity set expanded 5x).
- - RF link: DVB-S2X standard, AES-256-GCM encryption, emergency channel for laser outages (latency < 500ms).
+ - Laser links: Randomly select 2 neighboring satellites for data forwarding, adding 30% dummy transactions to obfuscate transmission paths (anonymity set expanded 5x).
+ - RF links: Serve as emergency channels during laser outages, using DVB-S2X standard and AES-256-GCM encryption with latency < 500ms.
- **Ground Access**:
- - Ground stations in Switzerland (Zug) and Iceland (Reykjavik), each with 5 radiation-hardened servers storing Monero full nodes.
- - Tor integration: 3-hop Tor relay for mainnet access, 99.9% node IP anonymity.
-
-
-### 2.3 Monero Node Optimization
-
-#### 2.3.1 Software Architecture
-- **Core Components**:
- - Consensus layer: Adapted for RandomX algorithm, allowing satellite nodes to mine (hash rate ≤5% to avoid centralization).
- - Network layer: Extended Dandelion++ protocol with "space stem phase" (3-5 hop satellite forwarding).
- - Storage layer: Differential synchronization (stores last 3 years of blocks), cold-hot data separation for radiation-hardened eMMC.
-
-#### 2.3.2 Performance Metrics
-| Metric | Satellite Node | Traditional Ground Node | Advantage |
-|--------------|------------------|-----------------------|------------------------------|
-| Transaction Verification Speed | 1500 tx/s | 800 tx/s | 87% improvement (NEON acceleration + memory optimization) |
-| Radiation Resistance | 100krad | Commercial <1krad | 100x radiation tolerance |
-| Data Redundancy | Dual-module backup | Single node | Failure recovery time <20ms |
-
-
-## 3. Implementation Timeline
-
-### 3.1 Preparation & Design Phase (2025)
-| Timeframe | Task | Deliverables |
-|--------------|----------------------------------------------------------------------|-----------------------------------|
-| **Q2-Q3** | Form core team (hire aerospace engineers, blockchain developers) | Team profiles公示 (Nextcloud) |
-| **Q3** | Finalize satellite hardware design (CPU/storage/communication选型) | Hardware design whitepaper (draft) |
-| **Q3** | Launch Gitea/Nextcloud platforms, open hardware/protocol resources | Open-source repository initialized |
-| **Q4** | Procure radiation-hardened components, begin lab testing | Material performance report |
-
-### 3.2 Development & Compliance Phase (2026)
-| Timeframe | Task | Deliverables |
-|--------------|----------------------------------------------------------------------|-----------------------------------|
-| **Q1** | Complete Monero node optimization code, start radiation software testing| Code repository commit (Gitea) |
-| **Q2** | Submit ITU spectrum application (Ku band + laser communication) | ITU application acceptance number |
-| **Q3** | Integrate satellite prototype, complete thermal vacuum testing | Test video (YouTube public) |
-| **Q4** | Finalize ground station选址 (Switzerland/Iceland), start compliance audit| Data privacy protection plan |
-
-### 3.3 Deployment & Operation Phase (2027)
-| Timeframe | Task | Deliverables |
-|--------------|----------------------------------------------------------------------|-----------------------------------|
-| **Q1** | Launch first tech demo satellite (V1.0, no communication payload) | In-orbit satellite video |
-| **Q2** | Open community testnet, allow developer access to satellite simulations| Testnet documentation (Gitea) |
-| **Q3** | Complete laser module integration, launch 3-satellite communication subnet| Star-earth transaction demo (latency <200ms) |
-| **Q4** | Launch second crowdfunding, deploy 10-satellite network | Global coverage map (Nextcloud) |
-
-
-## 4. Budget Allocation (XMR)
-
-### 4.1 Phase 1 Budget (30,000 XMR)
-| Project | Amount | Percentage | Detailed Usage |
-|----------------|----------|------------|-----------------------------------------------------------------------|
-| **Hardware R&D** | 15,000 | 50% | 3 satellite prototypes, radiation-hardened chips (BAE RAD750), laser modules |
-| **Software Development** | 8,000 | 27% | Monero node optimization, laser protocol development, automated testing |
-| **Compliance & Audit** | 4,000 | 13% | ITU spectrum application (3 satellites), GDPR/FCC compliance certification |
-| **Community Operations** | 2,000 | 7% | Developer incentives, technical workshops, multilingual documentation |
-| **Contingency** | 1,000 | 3% | Mitigate launch failures, supply chain delays |
-
-### 4.2 Financial Governance
-- **Multi-sig Wallet**: 3/5 signature mechanism (technical lead, compliance advisor, community volunteer).
-- **Transparency**: Quarterly financial reports with invoices on Nextcloud.
-- **Audit**: Third-party audits for quarterly financial reports (community oversight during preparation).
-
-
-## 5. Risk Assessment & Mitigation
-
-### 5.1 Technical Risks
-| Risk | Scenario | Mitigation |
-|----------------|--------------------------------------------------------------------------|-------------------------------------------|
-| Laser Link Failure | Satellite attitude adjustment or cloud obstruction | 1. Activate S-band RF backup link
2. Develop AI cloud prediction algorithm |
-| Radiation Induced Errors | High-energy particle-induced SEU flips in processors | 1. Triple-module redundancy for critical code
2. Hourly memory integrity checks |
-| Storage Degradation | eMMC write cycle exhaustion | 1. Cold-hot data separation
2. Dynamic address mapping algorithm |
-
-### 5.2 Compliance Risks
-| Risk | Scenario | Mitigation |
-|----------------|--------------------------------------------------------------------------|-------------------------------------------|
-| Spectrum Denial | ITU rejection of requested frequency bands | 1. Apply for backup bands (e.g., Ka band)
2. Participate in WRC-2027 spectrum negotiations |
-| Data Cross-Border | GDPR violations in ground station data storage | 1. Localized data storage (Switzerland/Iceland)
2. Privacy-enhanced computation (PEP) |
-
-### 5.3 Financial Risks
-| Risk | Scenario | Mitigation |
-|----------------|--------------------------------------------------------------------------|-------------------------------------------|
-| Funding Shortfall| Insufficient community contributions | 1. Open corporate sponsorship (satellite naming rights)
2. Pre-sell node DIY kits |
-| Cost Overrun | Radiation-hardened chip price fluctuations | 1. Fixed-price agreements with suppliers
2. Develop FPGA alternative solutions |
+ - Ground stations located in neutral regions (Zug, Switzerland & Reykjavik, Iceland), each equipped with 5 radiation-hardened servers running Monero full nodes.
+ - Access to the mainnet via 3-hop Tor relays, achieving 99.9% node IP anonymity.
## 6. Community Engagement Plan
-
### 6.1 Open-Source Collaboration
-- **Hardware Design**: All CAD drawings and BOM lists open-sourced on Gitea (CERN-OHL protocol), allowing third-party modification.
- - Example: [https://git.openenet.cn/MoneroSpace/hardware-design/ms01-bom.xlsx](https://git.openenet.cn/MoneroSpace/hardware-design/ms01-bom.xlsx) (Draft for public review)
-- **Protocol Development**: Laser communication code under MIT protocol, welcoming Pull Requests.
- - Repository: [https://git.openenet.cn/MoneroSpace/laser-protocol](https://git.openenet.cn/MoneroSpace/laser-protocol) (Under development)
-
-### 6.2 Incentive Mechanism
-| Contribution Type | Reward | Application Channel |
-|-------------------|------------------------------------------------------------------------|-----------------------------------|
-| Code Submission | 0.1 XMR/valid line (core protocol), 0.05 XMR/valid line (tools) | Gitea Issue tagged #code-bounty |
-| Hardware Modification | 0.05% transaction fee sharing after node deployment (compliance-reviewed) | Nextcloud form submission |
-| Documentation Translation | 0.01 XMR/word (technical whitepaper), 0.005 XMR/word (user guide) | Email to translator@openenet.cn |
+- **Hardware Design**: All CAD drawings and BOM lists are open-sourced on Gitea under the CERN-OHL protocol, enabling third-party modification.
+- **Protocol Development**: Laser communication code is released under the MIT protocol, welcoming community contributions.
+ - Repository: [https://git.openenet.cn/MoneroSpace](https://git.openenet.cn/MoneroSpace) (Under Development)
### 6.3 Transparency Assurance
-- **Progress Tracking**: Real-time development status on Gitea kanban: [https://git.openenet.cn/MoneroSpace/kanban](https://git.openenet.cn/MoneroSpace/kanban)
-- **Community Oversight**: Dedicated discussion forum (Monero Forum #OPENENET-MS01), weekly online Q&A sessions.
+- **Progress Tracking**: Weekly updates on development progress are posted to the Gitea repository.
## 7. Proposer Information (Preparation Phase)
-
### 7.1 Current Status
-- **Community Certification**: Applying for Monero Community Developer Certification (MCC), expected completion Q3 2025.
-- **Collaboration Platforms**: Gitea/Nextcloud ready, welcome collaborator applications (send resumes to dev@openenet.cn).
-- **Communication Channels**:
+- **Community Certification**: Applying for Monero Community Developer Certification (MCC), expected to complete in Q3 2025.
+- **Collaboration Platforms**: Gitea and Nextcloud are under preparation; send resumes to admin@openenet.cn to apply for collaboration access.
+- **Communication Channel**:
- Email: admin@openenet.cn
- - Forum: [https://forum.getmonero.org/u/OPENENET-Tech](https://forum.getmonero.org/u/OPENENET-Tech) (Preparation-phase account)
-
-
-## 8. Appendices (Upcoming Releases)
-1. **Forthcoming Resources**
- - 《Satellite Node Radiation-Hardened Design Whitepaper》 (Q4 2025)
- - 《Laser Communication Protocol Technical Report》 (Q1 2026)
- - 《ITU Spectrum Application Progress公示》 (Q2 2026)
-2. **Existing Resources**
- - Gitea Repository: [https://git.openenet.cn/MoneroSpace](https://git.openenet.cn/MoneroSpace) (Hardware templates, protocol frameworks)
- - Nextcloud Space: [https://cloud.openenet.cn/MoneroSpace](https://cloud.openenet.cn/MoneroSpace) (Collaboration access available upon request)
## 9. Conclusion
-The MoneroSpace project focuses on **open-source collaboration** to fill the gap in Monero's physical-layer censorship resistance. Despite preparation-phase challenges, our transparent development process, community-driven incentives, and robust technical solutions aim to build a decentralized satellite communication infrastructure.
+The MoneroSpace project focuses on **open-source collaboration** to address Monero's physical-layer censorship resistance needs. Despite preparation-phase challenges, our transparent development process, community-driven incentives, and robust technical solutions aim to build a decentralized satellite communication infrastructure.
-We welcome your support and participation in bringing censorship-resistant communication to the next dimension for the Monero network!
-**Proposal expiration date: December 28, 2030 00:00 (UTC)**
-**Proposer**: OPENENET Team
-**Date**: April 13, 2025
\ No newline at end of file
+**Proposer:** OPENENET Team
+**Date:** April 13, 2025
\ No newline at end of file