--- layout: fr title: OPENENET-MS01-MoneroSpace-Decentralized-Satellite-Network author: OPENENET Team date: April 13, 2025 amount: 30000 milestones: - name: Satellite Node Hardware Design & Team Formation funds: 7000 done: false status: unfinished - name: Radiation-Hardened Node Software Development & Compliance Preparation funds: 8000 done: false status: unfinished - name: Satellite Prototype Testing & Spectrum Application funds: 10000 done: false status: unfinished - name: Community Testnet Launch & First Deployment funds: 5000 done: false status: unfinished payouts: - date: 2025-09-30 amount: 7000 - date: 2026-03-31 amount: 8000 - date: 2026-09-30 amount: 10000 - date: 2027-03-31 amount: 5000 --- # OPENENET-MS01: MoneroSpace Decentralized Satellite Network **Proposal ID:** OPENENET-MS01 - **Project Repository:** [https://git.openenet.cn/MoneroSpace](https://git.openenet.cn/MoneroSpace) - **Collaboration Platform:** [https://cloud.openenet.cn/MoneroSpace](https://cloud.openenet.cn/MoneroSpace) - **Project funding deadline: December 28, 2035 00:00 (UTC). If the project is not completed after this time, the remaining funds will be handed over to CCS** ## 1. Project Overview ### 1.1 Core Objectives MoneroSpace aims to build a **decentralized censorship-resistant satellite communication network** through open-source hardware and encryption protocols, achieving: - **Global Ubiquitous Access**: Providing Monero transaction channels for areas without terrestrial networks (e.g., oceans, polar regions) and censored regions (e.g., Iran, Syria). - **Physical-Layer Censorship Resistance**: Bypassing internet blockades using low-earth orbit (LEO) satellites to ensure independent transaction broadcasting. - **Community-Driven Ecosystem**: Open-sourcing satellite hardware designs and communication protocols to enable third-party node deployment. ### 1.2 Core Values | Dimension | Innovation | Contribution to Monero Ecosystem | |--------------|----------------------------------------------------------------------------|------------------------------------------------| | **Technical** | Laser+RF hybrid communication, radiation-hardened full-node design | Enhances network redundancy against 51% attacks and geographic blockades | | **Compliance**| Neutral-region ground station deployment, ITU spectrum compliance | Meets data privacy and international telecommunication regulations | | **Economic** | Satellite node mining incentives, transaction fee sharing model | Establishes a sustainable decentralized infrastructure economy | ## 2. Technical Solution ### 2.1 Satellite Node Hardware Architecture (3U CubeSat Standard) #### 2.1.1 Core Component Specifications | Module | Technical Parameters | Radiation/Life Design | |----------------|--------------------------------------------------------------------------------------|---------------------------------------------| | **Dimensions/Weight** | 3U (10×10×34cm), 5.2kg (including 200g hydrazine fuel) | Carbon fiber frame + aluminum panel (40% reduction in space radiation absorption) | | **Power System** | - Dual-sided gallium arsenide solar panels: 60W peak power (28% efficiency)
- Radiation-hardened lithium battery: 25Ah (1000 charge cycles)
- Power management: Dynamic allocation (30W operational, 5W standby) | Anti-UV coating on solar panels for aging resistance | | **Computing Unit**| - Processor: 8-core ARM Cortex-A72 (1.5GHz, QML V-level radiation-hardened, SEU flip rate < 0.5 times/year)
- Memory: 8GB LPDDR4 (ECC-enabled, operating temp -55°C~+85°C)
- Storage: 512GB industrial eMMC (100,000 write cycles, hardware-level wear leveling) | Processor-integrated temperature sensor, automatic downclocking to 1.0GHz above 75°C | | **Communication Modules** | **Laser Terminal**:
- 1550nm wavelength, 500km range, 2.5Gbps rate
- QPSK+LDPC error correction (bit error rate < 10^-10)
**RF Module**:
- Ku band (12-18GHz), DVB-S2X compliant, phased array antenna (30dBi gain) | Laser terminal with micro-propulsion calibration (pointing accuracy ±0.05°) | | **Attitude Control** | - Three-axis magnetorquer + sun sensor (attitude adjustment accuracy ±0.1°)
- Hydrazine micro-thrusters (orbit maintenance, 3-year fuel reserve) | Dual-redundancy control modules (switching time < 30ms) | #### 2.1.2 Hardware Design Resources - Motherboard Layout: [https://git.openenet.cn/MoneroSpace/hardware-design/ms01-board-layout.png](https://git.openenet.cn/MoneroSpace/hardware-design/ms01-board-layout.png) (Draft for public review) - Antenna Deployment Mechanism: [https://git.openenet.cn/MoneroSpace/hardware-design/antenna-mech.pdf](https://git.openenet.cn/MoneroSpace/hardware-design/antenna-mech.pdf) (Including stress analysis) ### 2.2 Communication System Design #### 2.2.1 Three-Layer Communication Architecture ```mermaid graph TB subgraph User Layer A[User Terminal] -->|UHF 400-470MHz| B[Satellite Node] end subgraph Satellite Layer B -->|Laser 1550nm| C[Neighbor Satellite 1] B -->|Laser 1550nm| D[Neighbor Satellite 2] C -->|Laser 1550nm| E[Ground Station] D -->|S-Band 2-4GHz| E end subgraph Ground Layer E[Neutral Ground Station] -->|Tor Network| F[Monero Mainnet] end ``` - **User Access**: - Terminal modification: Compatible with Starlink Dish, integrated with radiation-hardened encryption module (ChaCha20-Poly1305). - Dynamic frequency hopping: 128 frequency points, 10-second interval, with satellite-side frequency prediction (45% improved anti-jamming success rate). - **Inter-Satellite Communication**: - Laser link: Randomly selects 2 neighbors for forwarding, adds 30% dummy transactions to obfuscate paths (anonymity set expanded 5x). - RF link: DVB-S2X standard, AES-256-GCM encryption, emergency channel for laser outages (latency < 500ms). - **Ground Access**: - Ground stations in Switzerland (Zug) and Iceland (Reykjavik), each with 5 radiation-hardened servers storing Monero full nodes. - Tor integration: 3-hop Tor relay for mainnet access, 99.9% node IP anonymity. ### 2.3 Monero Node Optimization #### 2.3.1 Software Architecture - **Core Components**: - Consensus layer: Adapted for RandomX algorithm, allowing satellite nodes to mine (hash rate ≤5% to avoid centralization). - Network layer: Extended Dandelion++ protocol with "space stem phase" (3-5 hop satellite forwarding). - Storage layer: Differential synchronization (stores last 3 years of blocks), cold-hot data separation for radiation-hardened eMMC. #### 2.3.2 Performance Metrics | Metric | Satellite Node | Traditional Ground Node | Advantage | |--------------|------------------|-----------------------|------------------------------| | Transaction Verification Speed | 1500 tx/s | 800 tx/s | 87% improvement (NEON acceleration + memory optimization) | | Radiation Resistance | 100krad | Commercial <1krad | 100x radiation tolerance | | Data Redundancy | Dual-module backup | Single node | Failure recovery time <20ms | ## 3. Implementation Timeline ### 3.1 Preparation & Design Phase (2025) | Timeframe | Task | Deliverables | |--------------|----------------------------------------------------------------------|-----------------------------------| | **Q2-Q3** | Form core team (hire aerospace engineers, blockchain developers) | Team profiles公示 (Nextcloud) | | **Q3** | Finalize satellite hardware design (CPU/storage/communication选型) | Hardware design whitepaper (draft) | | **Q3** | Launch Gitea/Nextcloud platforms, open hardware/protocol resources | Open-source repository initialized | | **Q4** | Procure radiation-hardened components, begin lab testing | Material performance report | ### 3.2 Development & Compliance Phase (2026) | Timeframe | Task | Deliverables | |--------------|----------------------------------------------------------------------|-----------------------------------| | **Q1** | Complete Monero node optimization code, start radiation software testing| Code repository commit (Gitea) | | **Q2** | Submit ITU spectrum application (Ku band + laser communication) | ITU application acceptance number | | **Q3** | Integrate satellite prototype, complete thermal vacuum testing | Test video (YouTube public) | | **Q4** | Finalize ground station选址 (Switzerland/Iceland), start compliance audit| Data privacy protection plan | ### 3.3 Deployment & Operation Phase (2027) | Timeframe | Task | Deliverables | |--------------|----------------------------------------------------------------------|-----------------------------------| | **Q1** | Launch first tech demo satellite (V1.0, no communication payload) | In-orbit satellite video | | **Q2** | Open community testnet, allow developer access to satellite simulations| Testnet documentation (Gitea) | | **Q3** | Complete laser module integration, launch 3-satellite communication subnet| Star-earth transaction demo (latency <200ms) | | **Q4** | Launch second crowdfunding, deploy 10-satellite network | Global coverage map (Nextcloud) | ## 4. Budget Allocation (XMR) ### 4.1 Phase 1 Budget (30,000 XMR) | Project | Amount | Percentage | Detailed Usage | |----------------|----------|------------|-----------------------------------------------------------------------| | **Hardware R&D** | 15,000 | 50% | 3 satellite prototypes, radiation-hardened chips (BAE RAD750), laser modules | | **Software Development** | 8,000 | 27% | Monero node optimization, laser protocol development, automated testing | | **Compliance & Audit** | 4,000 | 13% | ITU spectrum application (3 satellites), GDPR/FCC compliance certification | | **Community Operations** | 2,000 | 7% | Developer incentives, technical workshops, multilingual documentation | | **Contingency** | 1,000 | 3% | Mitigate launch failures, supply chain delays | ### 4.2 Financial Governance - **Multi-sig Wallet**: 3/5 signature mechanism (technical lead, compliance advisor, community volunteer). - **Transparency**: Quarterly financial reports with invoices on Nextcloud. - **Audit**: Third-party audits for quarterly financial reports (community oversight during preparation). ## 5. Risk Assessment & Mitigation ### 5.1 Technical Risks | Risk | Scenario | Mitigation | |----------------|--------------------------------------------------------------------------|-------------------------------------------| | Laser Link Failure | Satellite attitude adjustment or cloud obstruction | 1. Activate S-band RF backup link
2. Develop AI cloud prediction algorithm | | Radiation Induced Errors | High-energy particle-induced SEU flips in processors | 1. Triple-module redundancy for critical code
2. Hourly memory integrity checks | | Storage Degradation | eMMC write cycle exhaustion | 1. Cold-hot data separation
2. Dynamic address mapping algorithm | ### 5.2 Compliance Risks | Risk | Scenario | Mitigation | |----------------|--------------------------------------------------------------------------|-------------------------------------------| | Spectrum Denial | ITU rejection of requested frequency bands | 1. Apply for backup bands (e.g., Ka band)
2. Participate in WRC-2027 spectrum negotiations | | Data Cross-Border | GDPR violations in ground station data storage | 1. Localized data storage (Switzerland/Iceland)
2. Privacy-enhanced computation (PEP) | ### 5.3 Financial Risks | Risk | Scenario | Mitigation | |----------------|--------------------------------------------------------------------------|-------------------------------------------| | Funding Shortfall| Insufficient community contributions | 1. Open corporate sponsorship (satellite naming rights)
2. Pre-sell node DIY kits | | Cost Overrun | Radiation-hardened chip price fluctuations | 1. Fixed-price agreements with suppliers
2. Develop FPGA alternative solutions | ## 6. Community Engagement Plan ### 6.1 Open-Source Collaboration - **Hardware Design**: All CAD drawings and BOM lists open-sourced on Gitea (CERN-OHL protocol), allowing third-party modification. - Example: [https://git.openenet.cn/MoneroSpace/hardware-design/ms01-bom.xlsx](https://git.openenet.cn/MoneroSpace/hardware-design/ms01-bom.xlsx) (Draft for public review) - **Protocol Development**: Laser communication code under MIT protocol, welcoming Pull Requests. - Repository: [https://git.openenet.cn/MoneroSpace/laser-protocol](https://git.openenet.cn/MoneroSpace/laser-protocol) (Under development) ### 6.2 Incentive Mechanism | Contribution Type | Reward | Application Channel | |-------------------|------------------------------------------------------------------------|-----------------------------------| | Code Submission | 0.1 XMR/valid line (core protocol), 0.05 XMR/valid line (tools) | Gitea Issue tagged #code-bounty | | Hardware Modification | 0.05% transaction fee sharing after node deployment (compliance-reviewed) | Nextcloud form submission | | Documentation Translation | 0.01 XMR/word (technical whitepaper), 0.005 XMR/word (user guide) | Email to translator@openenet.cn | ### 6.3 Transparency Assurance - **Progress Tracking**: Real-time development status on Gitea kanban: [https://git.openenet.cn/MoneroSpace/kanban](https://git.openenet.cn/MoneroSpace/kanban) - **Community Oversight**: Dedicated discussion forum (Monero Forum #OPENENET-MS01), weekly online Q&A sessions. ## 7. Proposer Information (Preparation Phase) ### 7.1 Current Status - **Community Certification**: Applying for Monero Community Developer Certification (MCC), expected completion Q3 2025. - **Collaboration Platforms**: Gitea/Nextcloud ready, welcome collaborator applications (send resumes to dev@openenet.cn). - **Communication Channels**: - Email: admin@openenet.cn - Forum: [https://forum.getmonero.org/u/OPENENET-Tech](https://forum.getmonero.org/u/OPENENET-Tech) (Preparation-phase account) ## 8. Appendices (Upcoming Releases) 1. **Forthcoming Resources** - 《Satellite Node Radiation-Hardened Design Whitepaper》 (Q4 2025) - 《Laser Communication Protocol Technical Report》 (Q1 2026) - 《ITU Spectrum Application Progress公示》 (Q2 2026) 2. **Existing Resources** - Gitea Repository: [https://git.openenet.cn/MoneroSpace](https://git.openenet.cn/MoneroSpace) (Hardware templates, protocol frameworks) - Nextcloud Space: [https://cloud.openenet.cn/MoneroSpace](https://cloud.openenet.cn/MoneroSpace) (Collaboration access available upon request) ## 9. Conclusion The MoneroSpace project focuses on **open-source collaboration** to fill the gap in Monero's physical-layer censorship resistance. Despite preparation-phase challenges, our transparent development process, community-driven incentives, and robust technical solutions aim to build a decentralized satellite communication infrastructure. We welcome your support and participation in bringing censorship-resistant communication to the next dimension for the Monero network! **Proposal expiration date: December 28, 2030 00:00 (UTC)** **Proposer**: OPENENET Team **Date**: April 13, 2025